US009448860B2

United States Patent

(12) (10) Patent No.: US 9,448,860 B2
Lee et al. 45) Date of Patent: Sep. 20, 2016
(54) METHOD AND ARCHITECTURE FOR 6,523,038 B1* 2/2003 lida et al.ccccccenene. 707/100
PROVIDING DATA-CHANGE ALERTS TO 7,107,534 Bl: 9/2006 de Jong et al. . . 715/734
EXTERNAL APPLICATIONS VIA A PUSH 7,483,983 Bl . 1/2009 Bonefas et al. ... 709/226
SERVICE 7,739,614 Bl 6/2010 Haf:kworth T15/771
2002/0010715 Al* 1/2002 Chinn et al. 707/514
2002/0073241 Al* 6/2002 Gilbert et al. ... 709/312
(75) Inventors: Wen-Hsin Lee, Issaquah, WA (US); 20020143813 AL* 102002 Jellum ef al. .. 707/511
Joseph Harb, Woodinville, WA (US) 2002/0198946 Al* 12/2002 Wang et al. 709/206
2003/0004952 Al* 1/2003 Nixon et al. 707/10
(73) Assignee: Oracle America, Inc., Redwood 2003/0033179 A1* 2/2003 Katzetalcccoevirens 705/7
h 2004/0039683 Al* 2/2004 Mcgeorgeccoovveneene. 705/37
Shores, CA (US)
2004/0098459 Al* 5/2004 Leukert-Knapp et al. ... 709/206
3k
(*) Notice: Subject to any disclaimer, the term of this %883;8338;2 ﬁ} N ;gggj Eryuizlli Z: g%' """""""" ;8;;}88
patent is extended or adjusted under 35 3004/0162870 AL* 82004 Aseuri et al. o 709/206
US.C. 154(b) by 1893 days. 2004/0225637 A1* 11/2004 Heinzel et al.ovrrrrrens, 707/1
2004/0225718 Al* 11/2004 Heinzel et al. 709/206
21) Appl. No.: 10/394,280 2009/0187819 Al* 7/2009 Bonefas et al. 715/236
(21) App)
(22) Filed: Mar 21, 2003 * cited by examiner
(65) Prior Publication Data Primary Examiner — Steven Sax
US 2004/0186860 Al Sep. 23, 2004 Assistant Examiner — Christopher] Fibbi
(51) Imt.CL
GO6F 15/177 (2006.01) &7 ABSTRACT
GO6F 9754 (2006.01) Method and software architecture for providing data-change
HO4L 29/08 (2006.01) alerts corresponding to data changes in a data system to
GOGF 3/0484 (2013.01) o
external (of the data system) applications. A computer user
GOGF 9/44 (2006.01) interface is provided to enable a user to identify user
(52) US.Cl ; PO} . .
O Rl interface (UI) objects corresponding to a user interface of an
CPC o G0.6F 9/542 (2013.01): H 04Ij 67/26 application used to access the data system to provide data-
(2013.01); GOGF' 3/04842 (2013.01); GOGF change alert support for. For example, the Ul objects may
9/4443 (2013.01) comprise screens, views, applets, fields, and columns. Based
(58) Field of Classification Search on the alert-enabled UI objects, data-change alert triggers
CPC . HO4L 67/26; GOGF 3/0484; GOGF 3/04842; are generated to monitor for data-change events (e.g.,
GOGF 9/542 inserts, updates, and deletes) that cause changes to data in
USPC e 7 15/7347737., 710, 741 the data system corresponding to those alert-enabled UI
See application file for complete search history. objects. In response to data changes in the data system
. corresponding to alert-enabled Ul objects, appropriate trig-
(56) References Cited gers are executed to initiate generation of data-change alerts
U.S. PATENT DOCUMENTS comprising data values that have been changed. "[.'he .data-
change alerts are then pushed to the external application.
5,819,028 A * 10/1998 Manghirmalani et al. 714/57
6,055,570 A * 4/2000 Nielsen GOGF 17/30899

707/E17.119

DataControl

— WEB SERVER
. ActiveX

25 Claims, 15 Drawing Sheets

-------------- ~1. REFERENCE OR 3RD
PARTY GUI

130~/SELECTED APP.

145~ JSUBSCRIPTION DATA 134
136
f_ METADATA BUILDER
7] XML BUILDER
126
120
Alert ALERT METADATA BUILDER
B ot Business BUILDER ENGINE
" Subscnbe for et Process 122 APPLICATION
REPRESENTATION
S itk 42 128 PARSER
25— LOADISAYE |, __| 124 132
SELECTIONS EXTRACTOR
SUBSCRIPTION 7
DATAFILE i
(VD)
o Lo
7 Subemat it REPOSITORY
FILE (SRF) {88

B Actviues Account Entry Applet

[iyt i i
i I Seles Contacs Views: Screens, Views, 132
R e Applets, Columns,

Fields/Controls

US 9,448,860 B2

Sheet 1 of 15

. 20,2016

Sep

U.S. Patent

JEYVEIS Y]

| @oualayey

| Ayred pag 1o - — — ——
SOE (98

(jeusoyx3g

(s)uoneoiddy

soepalU|
BAE[10
WOJ 1898Is

“3°1) Aued pig

|0003104d
(S)dLlLlH

119A19S 93M

ino
Aued pig 10

CRIEYETEN

lasied/iojoelix3 ejepejsiy

\Jvm_‘ acl

81 W3LSAS VIVQ,
ISRIYILNT !

o~y

801A18g ssauIsng
821 4OPInG EIEPEION

A|_ va

Jap|ing Uely

(s)uoneoddy

_ WwalsAg BIEQ

juswnooq TWX

salelouan)

$88001d
ssauisng
He|Y

aoepaju| TNX

Pewa
/1997 aniona aam

(1s)

suomuyaq

S|0Jluod/spist
‘suwn|oy) ‘sjo|ddy
‘SMaIA ‘SUSRIOS

i1y :
18] oo i
H » peoT
—— WM 10 TALH SOW
..................................... _
148 1] Jusuodwo)
S 20IAIBS SSauIsng > ssaulsng <
Yanjep 'pbyo lapaauo] WX I||_|_
Em:w:oon_ TNX 1aBeuep 100lqo
ocg” | v u-z01’
Om/ .v.v\/ mm_ms_
80IM8S §sallsng s90d $59001d
ananp Buibessay SOIIBS ssauisng ssauisng
Haly tm._<
TNX ‘us9
BOIAJSS Ssauisng Jwgns X
punoging dilH .
Yo Janteg uonesddy vl

Jonog

aseqeleq

U.S. Patent Sep. 20, 2016 Sheet 2 of 15 US 9,448,860 B2

70
T 1
| |
| ut, l
, g5, BUSINESS | |
! “Y AND DATA | |
! USER INTERFACE OBJECTS |
| |
| 74 :

|
|
: EXECUTABLJE\> OBJECT MANAGER TIREAD ll :
! e “N(REPOSITORY | !
| | FILE (:SRF) i
l DATA MANAGER MHreap™ _}(\ :
|
|) 88 |

|
: L7z \7s i
| |
| |
| |
| |
|
N . |
| | |
| | |
' o |
| A 4 - v - |
| |
| |
| |
| |
| |
| |
| |

U.S. Patent Sep. 20, 2016 Sheet 3 of 15 US 9,448,860 B2

SIEBEL WEB ENGINE
USER INTERFACE (UI)
- SCREENS, VIEWS, APPLETS, CONTROLS

PRESENTATION ||) -NATIVE INTERFACES
SERVICES - HTML IN ANY BROWSER
ay - SCRIPTING ON DEDICATED CLIENT
90

Lo

OBJECT MANAGER (OM)

(- BUSINESS LOGIC

- BUSINESS OBJECTS

- BUSINESS COMPONENTS

- BUSINESS SERVICES

- SCRIPTING ON ALL PLATFORMS

L6

APPLICATION
SERVICES ~

Lo

DATA MANAGER (DM)

- DATABASE INTERACTION
- DYNAMIC SQL GENERATION
_ AUTO-ADAPTING TO Ul AND OM
- DATABASE SPECIFIC CONNECTOR

-

DATABASE
DATA SERVICES
- NO BUSINESS LOGIC

U - COMPREHENSIVE DATA MODEL
96 - PERFORMANCE OPTIMIZED

M

\-22

FIG. 3

U.S. Patent

Sep. 20, 2016

Sheet 4

BUSINESS
OBJECT

of 15

US 9,448,860 B2

REPOSITORY
FILE

BUSINESS BUSINESS) .., ,| BUSINESS |]
comPonenT 21921 | compoNeNT 102-2) ~ smponent 1022
DB TABLE DB TABLE
L11o-1 L110-2
|
N
DB RECORD o112 (TYP)
S_CONTACTS <[]7
ROW_ID | LAST NAME |FIRST NAME | COMPANY OF PHONE
113445 | JONES MIKE INTEL 503-555-3147
113446 | PRICE JAMES GENERAL ELECTRIC| 206-555-1719
113447 | FARNUS SHARON INTEL 408-555-3759
113448 | PIERCE STEPHANIE BOEING 425-555-0923
RDBMS DATABASE 22

FIG. 4

U.S. Patent Sep. 20, 2016 Sheet 5 of 15 US 9,448,860 B2

BUSINESS

coMPONENT |- 1027

PROPERTIES p~115 FIELD FIELD

L116—1 T’116—2

ATTRIBUTES/ ATTRIBUTES/
PROPERTIES PROPERTIES "t

[l

PROPERTY 1 PROPERTY 2 | PROPERTY 3 PROPERTY 4

k118-1 k118-2

FIG. 5

US 9,448,860 B2

9 DIA

S|o[UOD/SPISI4
‘suwnjo) ‘sys|ddy

mmﬂ ‘SMal\, 'SUSBIOS

— :

smaip sepuae saies T 5B
smalp sanwnoy saes I BB
smalp sewop sees I B

19(ddy Ajug unodoy ﬂomm(N =
1910dy Anu3 wuncooy sayanoy I EH

(449 3714
AHOLISOd3Y

O.VJ Y

88

8€L

oIy 40} 3quosans 4
L RE]

L8l 10} squosang 1
z aury ssappy [F

(ans)

vaty Jo} aguosang |
| aun ssaippy [F
ey 40y 3quosang _t
#ououd wep F
ua]y 10} 8QUOSANG 24

aweN F

A4 vivd
NOILI¥OSENS
A

LE47

SNOILOZT3S
JAVS/AVOT

L ¥OLOvdLX3

e

IeUIWBIS) JO} 3UISANG 2

Sheet 6 of 15

NOILVINISTH43d

< d3SHVd

NOILYOINddY

[
»

/NN_‘

wN_‘J

(44

$S9001d

19/0dy A3 Juncaoy ojul ssol IR =

Waly Joj aquIsgng i

Sep. 20, 2016

auoud uey F

INIONI d3d71ng » ssauisng AN
y3a7Ng v1vavi3n LI paly as @
h uajy Joj aquasang A
A sweN @
ualy J0j aquasgns _f
maN [E]
Vejy 10} 2quasqns 4
1oiddy 15 wnosoy W 55
vBly Joj 8quosans A
SMBIA SJUN0ADY sajeg WP

ON_‘\

@N;

43a1ng X

L —

d3071N8 V1VAvL3In

U.S. Patent

o9cl 1\

Waly Joj aquasang 4
U82.0G SjUNooy sajes P =
usapg sapunuoddo soies I B
0'2 s9les lpadis MR

vl

PE L) 3341 TAX

Y1¥ad NOILdIHOSaNsS

|\.m&< om_._.om_._m%(0El joJuoneIeq 9¢ LIN3ITO
@m/ P XBAoY ==
- NS ALYV Y3AY3S gIM =

QY€ HO IONTHYILTY feeeme” -

U.S. Patent Sep. 20, 2016 Sheet 7 of 15 US 9,448,860 B2

OPEN GUI, INITIATE ALERT ENABLE PROCESS |
AND SELECT APPLICATION

!

TRAVERSE REPOSITORY FILE EXTRACTING
FIG 7 METADATA CORRESPONDING TO SELECTED ~302
* APPLICATION'S Ul OBJECTS AND DEFINITIONS

— 300

A

BUILD APPLICATION REPRESENTATION

COMPRISING INTERNAL REPRESENTATION OF 1 404

APPLICATION'S SCREENS, VIEWS, APPLETS
AND FIELDS

A
METADATA BUILDER ENGINE INVOKES XML
BUILDER TO BUILD XML DATA TREE L 306
CORRESPONDING TO APPLICATION
REPRESENTATION

A\ 4
METADATA BUILDER ENGINE RETURNS THE
XML DATA TREE TO THE REFERENCE 308
OR THIRD-PARTY GUI

A 4
GUI RENDERS XML DATA TREE IN A VISUAL
TREE FORMAT TO THE ADMINISTRATOR WITH §-310
SELECTION BOXES

A
THE ADMINISTRATOR CHOOSES Ul OBJECTS
TO PROVIDE ALERT SUPPORT FOR VIA GUI J~312
SELECTION BOXES

A
SUBSCRIPTION DATA IDENTIFYING Ut OBJECTS
TO ALERT ENABLE IS SENT BACK TO ~ 314
METADATA BUILDER ENGINE

A

METADATA BUILDER ENGINE INVOKES ALERT
BUILDER TO CREATE ALERT BUSINESS 1_316
PROCESSES BASED ON APPLICATION

REPRESENTATION AND SUBSCRIPTION DATA

A 4
IMPORT (I.E., LOAD) SELECTEDALERT] 44s
BUSINESS PROCESSES INTO OBJECT MANAGER

U.S. Patent Sep. 20, 2016 Sheet 8 of 15 US 9,448,860 B2

<PAGE_TAB
INACTIVE="N"
NAME="Siebel Voice Employee Screen"
SCREEN="Siebel Voice Employee Screen"
SEQUENCE="6"
UPDATED="01/16/2002 13:21:49"
UPDATED BY="SADMIN"
CREATED="01/08/2002 11:35:59"
CREATED BY="SADMIN">
<PAGE TAB LOCALE
INACTIVE="N"
LANGUAGE_CODE="ENU"
NAME="ENU"
TEXT="Employeesg"
TRANSLATE="Y"
UPDATED="01/10/2002 11:28:50"
UPDATED BY="SADMIN"
CREATED="01/08/2002 11:36:33"
CREATED BY="SADMIN">
</PAGE_TAB LOCALE>
</PAGE TAB>
<PAGE_TAB

FIG. 8

U.S. Patent Sep. 20, 2016 Sheet 9 of 15 US 9,448,860 B2

ENTERPRISE
DATA SYSTEM

-]

..\ |REPOSITORY
APPLICATION }-152-1| APPLICATION f-152-2 ™

FILE

SCREEN §.154-1 | /SCREEN /i SCREEN
L1542f | \-154-2
VIEW VIEW
~ Y
U156-1 \156-2
APPLET APPLET APPLET
2 3 i
\-158-1 \.158-2 L1583
| I |
| 1 |
COLUMN OR COLUMN OR COLUMN OR
FIELD/CONTRQL FIELD/CONTROL FIELD/CONTROL

U160 (TYP)

FIG. 9

US 9,448,860 B2

Sheet 10 of 15

Sep. 20, 2016

U.S. Patent

01 DIA

Z6l }91ddy Alju3 JUNnody

B __ | Al - | 1Al ysn| L . Zvee 1060¢E]
02z~ Juled A4 'snie)ls goz’ ST 00Z” diz
B NINavS| [a] - | Y vof [- |
8Lz~ ‘Wea | Junodoy oLz’ :80A] JUN02DY 90z~ I 861~ 17 AUl ssalppy
B | [visnonv] [B - pwgumoig ssuiorziy)
9lz” 'SOUOJLB | Jopedwon v0z” AlD 961~ 1| aul] ssa.ppy
B___~ SEIET O [semod3yomeyv] [- semoJguomeYy]
vz’ 'salsnpu| 1aupeg zoz” # 8UoU4 U v6L- "JINYN.
+9409-1 D) | (EnD) (W3N) | (B

an ﬁwm:cmsmm % sijod | sewnuoddo g&ozF ds3 hﬂo.ﬂcoo.ﬁ SJUBLIYOENY h mﬁmwm<hm¢=_>zo< _,ot.__ el « ID)
i e

q 7 — A
(dAL vZZ 922 100y 1S9 MON ¥
yLO0-MNVEHNEG-1S | v100-MNYEINE-1S 6299-1+8 (818) | ¥100-MNYEHNG-1S | 0O Spleyory suely
yled)y v
SSIW FINMYHS-TS | 0s19d Snoaue|(j3os|ul 6106-268 (€16) | SSIIN IINMYHS-TS| UQISeadQ puel v
MMM Aelzig §565- GGG (G2h) Jelzg 1s8] Xeizig ¥
SISHOI 286802/ (90/ B 2100V 15090 y-15} SISO R WIS MR Y
N snjeig sauysnpu] S9LI0}IIS) #auoyd Ulel S s £ aweN S meN
+9409-1 €D | (Enp) (man) | (aBD
_ 061 1o|ddyy 1817 1UNOOOY AN S1INNOJJY) p
v/l __leg maIp ZTL| AUNody
Y| Junoody | :seuenp P81y Z81 081~ 81 | o alosiH |[a]\ S)unoooy AW |:MOHS

<

QD) NOILYSN3AN09)$3NNIATY S15¥03004 [S310nD | BvanTvo | SaILIALLOY | SLOVINOD [SLNN0DIY | SaiNnL0ddo] anon [)

| _

X

[

d13H

MIIA

113

ERlE]

XOCKER

gg.’ o8}’

(YA

U’ & 0 @ O @ & o

U.S. Patent Sep. 20, 2016 Sheet 11 of 15 US 9,448,860 B2

Application Representation Subscription Data
4 —A N If A I
View Applet Column/Field : Ul Reference Alert Enable
I
Sales Accounts : Hht Yes
: I
176A~_ Account List Applet : it Yes
New 1 H#HH No
Name ! it Yes
Site [#HiHt No
Main Phone # | #itH No
Territories : HHHt No
[: :
More Info Account Entry : tHH Yes
194A~~ Name [HHHE Yes
202A~- Main Phone # | Ht No-
196A~_ Address Line 1 | HHHE No
198A~- Address Line 2 | HitH No
200A~. City : H#HiHt Yes
Activities Account Entry i
Assets Account Entry :
: I
Attachments Account Entry :
: I
I
224A~- Contacts Account Entry : it Yes
Personal Title { HHH No
Last Name : Hitt Yes
First Name] HHE Yes
Job Title : H#HHt No
Phone # i H#HHt No
Fax # : HHt No
Pager Phone # | HHt No
Street Address 1 | HHH No
Street Address 2 | H#HHt No
State : HH Yes
City I HEE Yes
Postal Code : HH No
Country : HiHt No
E-mail Address HH No
Alias : H#HH No
Home Phone # HiHt No
Division : HHE No
Employee | i No
. | . .
: . | : :
Sales Contacts : it Yes
l
I
|

FIG. 11

U.S. Patent Sep. 20, 2016 Sheet 12 of 15 US 9,448,860 B2

&l Siebel Sales 7.0
= il Sales Opportunities Screen

ol Sales Accounts Screen
¥ Subscribe for Alert

= Wl Sales Accounts Views
[¥ Subscribe for Alert

= Wl Account List Applet
144 (TYP) f-l ¥ Subscribe for Alert

= New
J7 Subscribe for Alert

B Name
¥ Subscribe for Alert

= Site
¥ Subscribe for Alert

& Main Phone #
I~ Subscribe for Alert

145 (TYP) 140 (TYP)
\.r More Info Account Entry Applet

" Subscribe for Alert

B Name
¥ Subscribe for Alert

£ Main Phone#
{7 Subscribe for Alert

& Address Line 1
™7 Subscribe for Alert

[Address Line 2
™ Subscribe for Alert

142 (TYP)}~ City
§# Subscribe for Alert

143 (TYP)

\B M Activities Account Entry Applet
Assets Account Entry Applet
141 (TYP)

Il Sales Contacts Views

= Il Sales Activities Views

Il Sales Calendar Views
: 13

FIG. 12

(o)}

U.S. Patent Sep. 20, 2016 Sheet 13 of 15 US 9,448,860 B2

16 ~=-rr 75 B %u 230 FIGo 13
Web|Client Thin |Client Client
Thin Client I/F
(Client Side)
Submit a change L232
(Insert, Update, Delete)
_— S — 3rd Party (LE.,
NETWORK_ _ _ _ External)

Application(s)

18

s

—
ENTERPRISE Database

v
DATABASE
12
| DATA SYSTEM 22 Server 12

App Server(s)

! [
f |
|| [WEB ENGINE ||Thin Client|| XML Document | 38,50~ Outbound |
[60 ||VF (Server v Business Service |
| XMLf Side) || (Ch9d Value, th (HTTP, MSMQ, etc) | |!
: Interface Ul Layer ® @ :
| @ . |
Submit XML doc.
1™ \Loza @ Merge |
: Generate XML XML docs 5 S 6mit :
0cs u
: gebr)d ?l[‘/lange to | g Merge > XML :
| ject Manager |
: XML Converter < ® || XML :
: Business Service |~ Call | | Generation Alert| ||
|| |Object \-46 /_ Business Service | | |
1| (Manager 76 7y |
. 44
: — 4 —' Trigger event: (®) Call business service ||
| Business : ILngrtt and send changed data values | |
' Component 1 pdate | |
| - . elete [
110207 $ Alert |
n Business Process
: Momtors Alert :
: Business Process |
| Write change :
: to DB - Application Server :
| ™
| |
' |
' |
' |
' [
' [
' [
|

U.S. Patent Sep. 20, 2016 Sheet 14 of 15 US 9,448,860 B2

Section Header:

[EAI MSMQ Transport _f\252a
Parameters:
Key 254a Value [256a
[MsmqPhysicalQueueName | [private$\jayates? |
[MsmqQueueMachineName _ | [jsriniva04 |
New Key k254b New Value k256b
[||] Update
\254¢ \L256¢
Section Header:
[SMC Alert 252b
Parameters:
Key /254d Value /256d
[WorkflowDelete | | SMCAlert-Delete xml -
[WorkflowInsert | | SMCAlert-Insert.xml |
[WorkflowOlfValue | [SMCAlert-OldFieldValue.xml |
[WorkflowNewValue | [SMCAlert-NewFieldValuexml | | Update

New Section Header:

I f252¢
Paramelers:
New Key New Value
| ||] Update
Save Changes Cancel and Go to Subscriptions Close the Application

s

250 FIG. 14

U.S. P
atent Sep. 20, 2016 Sheet 15 of 15 US 9,448,860 B2

416~
.EI

(»

424 I
T

[T
I

DISK ARRAY

412

414

400

FIG. 15

US 9,448,860 B2

1
METHOD AND ARCHITECTURE FOR
PROVIDING DATA-CHANGE ALERTS TO
EXTERNAL APPLICATIONS VIA A PUSH
SERVICE

FIELD OF THE INVENTION

The present invention relates to data systems in general,
and a method and system for providing data alerts to
applications external to data systems using a push service in
particular.

BACKGROUND INFORMATION

In a typical data system, such as an enterprise data system,
a various users operating client machines (i.e., clients) may
be concurrently connected to one or more data system
application servers to access data in one or more shared
databases via corresponding data system “middleware”
applications. These client connections may comprise a local
area network (LAN) or wide area network (WAN) connec-
tion, or a Web-based connection, wherein a Web client may
access the data system via the Internet. Generally, the
various users of the data system are enabled to access (e.g.,
read, insert, update, and/or delete) data stored in the
database(s) via the middleware applications in connection
with appropriate client-side software. The net result is that
data in the data system database(s) are constantly changing.

In many instances, the data in the database(s) will be used
by more than one data system application. For example, a
common set of data hosted by a data system may be used to
support a Customer Relationship Management (CRM)
application, a Sales application, an Employee Relationship
Management (ERM) application, a Human Resources (HR)
application, a billing application, etc. Generally, these appli-
cations may run in a middleware layer, or may run as an
external third-party application that accesses the data in the
data system via an application program interface (API)
provided by the data system that is designed for such
purposes. The effect of sharing a common set of data across
applications is that changes made via one of the applications
may affect data used by another application. Under this
scenario, it may be desired to alert the other application(s)
that the data has changed. In other instances in which only
a single application provides access to the database (or a
particular set of data hosted by the database), changes to the
database may changes in which the use of similar alert
would be advantageous.

Typically, such alert conditions may be handled at the
database level or at the middleware level. For example, most
databases used for large-scale data systems provide “trigger”
mechanisms that enable predefined operations to be auto-
matically performed in response to a triggering event, such
as before insert, update and delete, and after insert, update,
and delete triggers common to SQL-based RDBMS data-
bases. Each trigger includes logic and operations defined by
corresponding trigger code that are executed in response to
the triggering event in a manner similar to executing code in
a stored procedure. Typically, the trigger code will be used
to automatically modify data in one or more other tables,
perform an integrity check of the data being inserted (that
can’t be handled by the database’s built-in integrity check
mechanisms), and/or call one or more stored procedures to
perform trigger-handling operations. In addition, in some
database environments, the trigger and/or stored procedure
may invoke a method used by software components external
from the database software components, such as a middle-

10

15

20

25

30

35

40

45

50

55

60

65

2

ware application. For example, some database servers allow
triggers to invoke Java methods in middleware applications.
In this way, the middleware application may be informed of
the triggering event directly via the database trigger. In
addition, alert conditions may be handled via the middle-
ware application. Since some middleware applications pro-
vide an abstracted mechanism for accessing the database,
developers of these applications can define triggering events
and how they are handled through operations and logic
defined by pre-written middleware software code.

Although there are mechanisms for informing middle-
ware applications of triggering events, and defining and
handling triggering events via middleware applications,
there presently is no efficient mechanism for either enabling
developers of external “third-party” applications to define
triggering events at the database or middleware level with-
out modifying the database or existing middleware soft-
ware), or informing the external third-party applications of
such triggering events. Since these are external applications
are developed by third-party developers (i.e., developers
who did not design the middleware data system application),
they generally are not allowed direct access to the database
schema, which is required to write database triggers, or to
the middleware software code. Therefore, there is no way
developers of the third-party applications can generate their
own triggering events at the database layer or the middle-
ware layer. As a result, in order to determine if various data
system data have changed, the third-party application must
use a “pull” mechanism, such as a data system query. This
is very inefficient, as it causes significant overhead for both
the third-party application and the data system.

SUMMARY OF THE INVENTION

A method and corresponding software architecture for
providing data-change alerts corresponding to data changes
in a data system to external (of the data system) applications.
A user interface is provided to enable a user to identify user
interface (UI) objects corresponding to a user interface of an
application used to access the data system to provide data-
change alert support for. For example, the data system user
interface corresponds to a user interface that users would use
to access data in the data system via a typical computer
client (e.g., thin-client, Web-client, etc.) connection to the
data system. In one embodiment, the user interface com-
prises a hierarchy of screens, views, applets (i.e., forms),
columns, and fields. Based on the alert-enabled UI objects,
data-change alert triggers are generated to monitor for
data-change events (e.g., inserts, updates, and deletes) that
cause changes to data in the data system corresponding to
those alert-enabled Ul objects. For example, an update may
cause changes to underlying data corresponding to one or
more fields on a given applet. In response to such data
change-events, appropriate data-change alert triggers are
executed to initiate generation of data-change alerts that
include data pertaining to the data values that have been
changed. The data-change alerts are then pushed to the
external application using an outbound service, such as an
HTTP service or a messaging queue service.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advan-
tages of this invention will become more readily appreciated
as the same becomes better understood by reference to the
following detailed description, when taken in conjunction

US 9,448,860 B2

3

with the accompanying drawings, wherein like reference
numerals refer to like parts throughout the various views
unless otherwise specified:

FIG. 1 is a schematic block diagram illustrating a distrib-
uted software architecture for providing data-change alerts
(corresponding to data changes made to a data system) from
the data system to external applications via a push service in
accordance with one embodiment of the invention;

FIG. 2 is a block schematic diagram illustrating a multi-
layer software architecture used by an embodiment of the
data system shown in FIG. 1;

FIG. 3 is a block schematic diagram illustrating further
details of the multi-layer software architecture of FIG. 2;

FIG. 4 is a block schematic diagram illustrating further
details of various object manager objects in accordance with
the multi-layer software architecture;

FIG. 5 is a block schematic diagram illustrating further
details of a business component as used in the multi-layer
software architecture;

FIG. 6 is a block schematic diagram illustrating details of
a metadata builder component in accordance with one
embodiment of the invention that is used to generate a
computer user interface by which a user is enabled to select
user interface (UI) objects of a data system application user
interface to alert-enable;

FIG. 7 is a flowchart illustrating the operations and logic
performed by one embodiment of the invention when gen-
erating data pertaining to the computer user interface and
generating data-change alert triggers (comprising alert busi-
ness processes);

FIG. 8 is a code listing corresponding to an exemplary
portion of a repository file from which metadata are
extracted to build an application representation of the appli-
cation user interface;

FIG. 9 is a block diagram illustrating the user interface
(UD) hierarchy of a user interface that enables access to an
enterprise data system in accordance with one embodiment
of the invention;

FIG. 10 is a representation of an exemplary user interface
corresponding to a Sales Accounts view provided by an
exemplary data system application;

FIG. 11 shows a portion of an application representation
that corresponds to the Sales Accounts view of FIG. 12,
along with corresponding alert subscription data;

FIG. 12 is a representation of a graphical user interface
window that enables an administrator to select UI objects to
provide data-change alert support for that is produced in
accordance with the flowchart of FIG. 7 and the software
architecture of FIG. 6;

FIG. 13 is a combination block schematic diagram and
flow diagram illustrating further details of the distribute
software architecture of FIG. 1 and illustrating various
operations performed by software components of the soft-
ware architecture in response to a data-change event;

FIG. 14 is a representation of a portion of a computer user
interface via which configuration information may be
defined; and

FIG. 15 is a schematic diagram illustrating various com-
ponents of an exemplary computer server system that may
be used for the various computer servers in distributed
software architectures of FIGS. 1 and 13.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

A method and distributed software architecture for pro-
viding data-change alerts via a push service in response to

25

30

35

40

45

65

4

third-party defined triggering events are described in detail
herein. In the following description, numerous specific
details are disclosed, such as exemplary software and system
architectures, to provide a thorough understanding of
embodiments of the invention. One skilled in the relevant art
will recognize, however, that the invention can be practiced
without one or more of the specific details, or with other
methods, components, etc. In other instances, well-known
structures or operations are not shown or described in detail
to avoid obscuring aspects of various embodiments of the
invention.

Reference throughout this specification to “one embodi-
ment” or “an embodiment” means that a particular feature,
structure, or characteristic described in connection with the
embodiment is included in at least one embodiment of the
present invention. Thus, the appearances of the phrases “in
one embodiment” or “in an embodiment” in various places
throughout this specification are not necessarily all referring
to the same embodiment. Furthermore, the particular fea-
tures, structures, or characteristics may be combined in any
suitable manner in one or more embodiments.

A high-level view of a distributed software architecture 10
in accordance with one embodiment of the invention is
shown in FIG. 1. As illustrated, the architecture comprises a
well-known n-tier configuration, including a database tier or
layer 12, an application server tier or layer 14 (also known
as the middleware tier or layer), and a client tier or layer 16.
Collectively, the various software and hardware components
corresponding to database tier 12 and application server tier
14 comprise an enterprise data system 18.

In general, the software components corresponding to
each tier will be run by one or more separate machines
corresponding to that tier. For example, database server
software running on a database server 20 is used to host a
database 22 that contains various data stored by enterprise
data system 18. Similarly, various application software
components and modules corresponding to application
server tier 14 are run on one or more application servers 24.
In one embodiment, the n-tier architecture further includes
a Web server tier 26 that enables Web clients 28 to access
enterprise data system 18.

In accordance with an aspect of the invention, software
components corresponding to application server tier 14
enable developers of external third-party applications 30 to
select various user interface (UI) objects 32 pertaining to
one or more data system applications 34 running in appli-
cation layer 14 to “alert-enable” via a reference or third-
party graphical user interface (GUI) 36. The software com-
ponents are used to automatically generate data-change alert
triggers corresponding to the alert-enabled Ul objects (em-
bodied as alert business processes), and generate data-
change alerts 38 that are pushed (i.e., automatically sent) to
third party applications 30 in response to any database
access events that cause the data-change alert triggers to be
triggered. These software components include a metadata
builder 40, alert business processes 42, an alert business
service 44, an XML converter 46, an HTTP outbound
business service 48 and a messaging queue business service
50.

In accordance with one embodiment of the architecture,
third-party applications 30 running on an application server
31 are enabled to submit data to and receive data from
enterprise data system 18 via a “mobile connector” appli-
cation program interface (API) 52. In general, various types
of API’s may be employed in addition to the mobile con-
nector API described herein. Under the mobile connector
API, incoming and outgoing data are sent as extended

US 9,448,860 B2

5

markup language (XML) documents over (generally) over
an applicable network(s) via Web server 26 using the HTTP
(hypertext transport protocol) or the HTTPS (HTTP
secured) protocol, or via a Siebel® COM (component object
model) or Java interface 56. On the application server side,
a Web engine 58 including an XML interface 60 enables
access to database 22 via an object manager 76, as described
below in further detail.

Typically, the enterprise data system will provide various
means to access the data that it stores, such as client
connections, as will be understood by those skilled in the
database/data system arts. Ideally, it is desired to enable
third-party applications access to the enterprise data system
in a manner that is substantially transparent to the data
system. In one embodiment, each connection provided by
the mobile connector appears to the enterprise data system
as a “normal” client connection, and as such, does not
require any changes to the core software components that
support the enterprise data system.

In one embodiment, software corresponding to core soft-
ware components that control normal operations of enter-
prise data system 18 (i.e., operations involving interaction
with the enterprise data system) can be logically structured
as a multi-layered architecture 70, as shown in FIG. 2. In one
embodiment, the logical multi-layered architecture provides
a platform for common services 72 to support various
applications that implement the architecture. These services
may be logically partitioned into a user interface layer 74, an
object manager layer 76, and a data manager layer 78.

In one embodiment, user interface layer 74 provides the
screens, views, and applets that make up various user
interfaces that are rendered on client machines that connect
to the enterprise data system via a computer-network-based
client connection to enable users of those client machines to
interact with the enterprise data system. Generally, user
interface layer 74 may be configured to support various
types of clients, including traditional connected clients,
remote clients, thin clients over an Intranet, Java thin clients
on non-Windows-based operating systems, and Web clients
over the Internet, etc. These clients are collectively repre-
sented as thin client 75 in the figures herein.

Object manager layer 76 is designed to manage one or
more sets of business rules or business concepts associated
with one or more applications and to provide the interface
between user interface layer 74 and data manager layer 78.
In one embodiment, the business rules or concepts can be
represented as business objects. In one embodiment, the
business objects may be designed as configurable software
representations of the various business rules or concepts
applicable to the data services provided by embodiments of
the invention, as explained below in further detail.

Data manager layer 78 is designed to maintain logical
views of underlying data stored in one or more databases
22-n (e.g., database 22) corresponding to a data storage layer
84, while allowing the object manager to function indepen-
dently of the underlying data structures or tables in which
data are stored. In one embodiment, the data manager
provides certain database query functions, such as genera-
tion of structure query language (SQL) in real time to access
the data. In one embodiment, data manager 88 is designed to
operate on object definitions 86 stored in a repository file 88
corresponding to a database schema used to implement the
data model for the system, as described in further detail
below. Generally, the data manager layer is designed to
handle the interactions with one or more specific target
databases and provide the interface between the data man-

10

15

20

25

30

35

40

45

50

55

60

65

6

ager and those databases, via either generic (e.g., Open
Database Connectivity (ODBC)) or native (e.g., OCI) data-
base interface protocols.

FIG. 3 shows a block diagram illustrating another logical
representation of a multi-layered architecture corresponding
to the core operations of the enterprise data system. Again,
the multi-layered architecture as illustrated in FIG. 3 pro-
vides the platform for various common services designed
and configured to support the various core operations pro-
vided by the enterprise data system. In one embodiment,
these various services include a presentation services layer
90 corresponding to services provided by an applet manager
and user interface 92, an application services layer 94
corresponding to services provided by object manager layer
76 and data manager layer 78, and a data services layer 76
corresponding to services provided by database 22.

In one embodiment, presentation services 90 may be
designed and configured to support various types of clients
and may provide them with user interface screens, views and
applets. In one embodiment, application services 94 may
include business logic services and database interaction
services. In one embodiment, business logic services pro-
vide the class and behaviors of business objects and business
components implemented by the application services. In one
embodiment, database interaction services may be designed
and configured to take the user interface (UI) request for data
from a business component and generate the appropriate
database commands (e.g., SQL queries, etc.) to satisfy the
request. For example, the data interaction services may be
used to translate a call for data into RDBMS-specific SQL
statements.

A multi-layer architecture illustrating the relationships
between business objects, business components, and data-
base tables is shown in FIG. 4. A business object 100 sitting
at the top layer passes various data access requests to
business components 102-1, 102-2, and 102-3 to retrieve
data pertaining to the business object from a database 22.
For example, business object 100 may pertain to a contact
object and business components 102-1, 102-2, and 102-3 are
used to access data in a database 22 pertaining to contacts.

In one aspect, business components are objects that span
data from one or more physical database tables and calcu-
lated values by referencing a base table and explicitly
joining and linking other tables, including intersection
tables, as depicted by tables 110-1 and 110-2, each of which
include a plurality of records 112. Each business component
contains information for mapping to various data stored in
those tables. More specifically, these mappings are between
a requested object, such as a subject, and information
pertaining to that object that are stored in the database
table(s) to which the business component corresponds. In
one embodiment, database schema information stored in
repository file 88 is used by the business components in
determining their table mappings.

A block diagram of a logical structure of a business
component in accordance with one embodiment of the
present invention is shown in FIG. 5. Each business com-
ponent (e.g., 102-1, 102-2, and 102-3) may include a set of
properties 115 that pertain to the respective business com-
ponent (e.g., NAME, which specifies the logical name of the
business component, TABLE NAME, which specifies the
actual name of the underlying table, etc.). A business com-
ponent also includes a set of fields 116, each of which may
have a set of associated attributes or properties 118. For
example, a field may include a NAME property that iden-
tifies the name of the field, a COLUMN NAME property

US 9,448,860 B2

7

that identifies the column of the underlying table to which
the respective field is mapped, etc.

The reference or third-party GUI 36 in combination with
metadata builder 40 enables third party developer or admin-
istrators to select which screens, views, applets, columns,
and controls/fields to request alert service subscription for.
Further details of metadata builder 40 are shown in FIG. 6.
At the core of the metadata builder is a metadata builder
engine 120, which includes a parser 122, and an extractor
124. Additional components include an XML builder 126
and an alert builder 128. In one embodiment, metadata
builder 40 may be implemented as a business service that is
managed by object manager 76.

With reference to FIG. 7, the process for selecting which
UT objects to alert-enable and for generating corresponding
alert business processes begins in a block 300 in which the
third-party user (e.g., an administrator) opens reference or
third-party GUI 36, initiates the alert-enable process, and
selects an application the administrator would like to pro-
vide data-change alert support for. Generally, the adminis-
trator will be presented with a user interface such as a dialog
box or web page (both not shown) that enables the user to
select an application to alert-enable from among one or more
data system applications 34 that are supported by the enter-
prise data system.

Upon selection of the application, selection data 130
identifying the selected application is passed to metadata
builder engine 120, which then invokes extractor 124 to
traverse repository file 88 and extract metadata correspond-
ing to the selected application’s Ul objects and definitions in
a block 302. As described above, the repository file contains
object definitions for the various objects corresponding to all
of the applications in the enterprise data system, stored as
metadata in a compiled format. Included in these object
definitions are user interface object definitions and their
relationships. An exemplary portion of a repository file is
shown in FIG. 8. (It is noted that in one embodiment the
repository file is actually stored in a compiled format rather
than the ASCII text format shown in FIG. 8, which is used
in the figure for clarity.)

In one embodiment, the user interface objects have a
hierarchical relationship, as shown in FIG. 9, wherein the
top level of the hierarchy corresponds to the entire enterprise
data system, as depicted by an enterprise data system block
150. Each enterprise data system will include one or more
applications 152, with each application 152 including a
plurality of screen 154. In turn, each screen will include one
or more views 156, with each view including one or more
applets 158. Finally, each applet will include a plurality of
columns and/or fields/controls 160, with each column cor-
responding to column in a list applet each field/control
typically comprising an edit control on an entry applet (i.e.,
detail form) that is either mapped to a column in a database
table or a list of values that are either predefined, or
generated at run-time based on current data in the enterprise
data system.

A rendered user interface 170 that graphically depicts the
UT object hierarchy of FIG. 9 is shown in FIG. 10. User
interface 170 includes a screen bar 171 corresponding to
screens 154 that enable a user to select a screen the user
desires to view. For example, in the illustrated user interface
these screens include a “Home” screen 172, an “Opportu-
nities” screen 174, and “Accounts” screen 176, a “Contacts”
screen 178, an “Activities” Screen 180, a “Calendar” screen
182, a “Quotes” screen 184, a “Forecasts” screen 186, and
a “Revenues” Screen 188. Activation of the tab having the
screen name causes the application to render the selected

10

15

20

25

30

35

40

45

50

55

60

65

8

screen and navigate the user to the application “domain”
corresponding to the selected screen.

As discussed above, each screen includes one or more
applets. Under common user interface terminology, applets
would generally fall into the “form” category. Applets
generally have two formats: list applets and form or detail
applets. A list applet contains a tabular list of data including
multiple rows and data columns similar to that shown in an
Account list applet 190. A form or detail applet typically
includes a plurality of fields containing data pertaining to a
particular “record,” wherein the record will often correspond
to a selected row in an accompanying list applet. For
example, an Account entry applet 192 includes a “Name”
field 194, and “Address Line 1” field 196, and “Address Line
2” field 198, a “Zip” field 200, a “Main Phone #” field 202,
a “City” field 204, a “State” field 206, a “County” field 208,
an “Account Type” filed 210, a “Status” filed 212, an
“Industries” field 214, a “Territories” field 216, and
“Account Team” field 218 and a “Parent” field 220. Gener-
ally, each field will have a corresponding edit control, which
typically will comprise an edit box or a dropdown control
from which a user may select from a predetermined list of
values. In some instances, a dialog picklist control 222 may
also be provided that enables a user to select from list of
options via a dialog box that is populated with the list using
a run-time query.

In many instances, applets may be linked via a parent-
child type relationship. For example, Account list applet 190
is a parent of Account entry applet 192, which includes a
plurality of tabs 224 to enable a user to enter or view
information specific to the name on each tab and the
currently selected account record. For example, the currently
selected account is “A & W Gifts and Flowers,” and a user
could enter information concerning contacts for this account
by activating a “Contacts” tab 226, which would bring up a
Contacts form including a plurality of fields pertaining to
contact information (not shown).

Returning to the flowchart of FIG. 7, in a block 304 parser
122 builds an application representation comprising an
internal representation of the selected application’s screens,
views, applets, columns, and fields/controls based on the
corresponding user interface object definition metadata that
were extracted in block 302, as depicted by application
representation 132. In one embodiment, the application
representation comprises a hierarchical tree structure of the
object definitions extracted by the extractor. In exemplary
application representation occupies the left-hand portion of
FIG. 11. Each node in the hierarchical tree stores data
corresponding to a respective application representation
object. The respective object may be an application object,
screen object, view object, applet object, etc. Nodes corre-
sponding to various Ul objects in FIG. 10 share the same
root reference number in both FIGS. 10 and 11, wherein an
appended “A” is added to the reference number in FIG. 11.
After getting the object definition from the extractor, the
parser will convert the object to an application representa-
tion object and store it in a node of the hierarchical tree
structure. This is repeated for all objects until the tree is
filled.

Next, in a block 306 metadata builder engine 120 invokes
XML builder 126 to build an XML data tree 134 corre-
sponding to application representation 132, and returns the
XML data tree to reference or third-party GUI 36 in a block
308. To perform this operation, the XML builder traverses
the hierarchical tree and builds an XML representation for it.
The reference or third-party GUI parses the XML data tree
and renders a selection tree 136 in a window or frame similar

US 9,448,860 B2

9

to that shown in FIG. 12. In general, the selection tree will
have a hierarchy similar to the user interface hierarchy of the
application, as defined by application representation 132.

The reason for using the name “reference or third-party”
GUI is that the GUI can either be a GUI supplied by the data
system vendor (the “reference” GUI), or a customized GUI
developed by the third party. In one embodiment, the ref-
erence GUI comprises a plurality of ASP (Active Server
Page) web pages that use an ActiveX data control to get
access to the metadata builder. In this embodiment, the ASP
creates the ActiveX control, gains access to the metadata
builder, starts the XML extraction to get the XML object
definition, renders the HTML for the reference GUI, returns
subscription XML data for UI components to provide data-
change alert support for, triggers the creation of alert busi-
ness processes, and allows loading and saving existing
subscriptions, as depicted by a block 137 and subscription
data document 138. In one embodiment, the ActiveX Data-
Control is used to create selection tree 136, wherein the
ActiveX DataControl enables the window to have function-
ality similar to the Microsoft Windows Explorer file man-
agement tool. For example, objects corresponding to
screens, views and applets are displayed with adjacent file
icons, including open file icons 140 and closed file icons
141, while column and field/control objects are displayed
with adjacent document icons 142. Additionally, activation
of an expansion control 143 causes data pertaining to a
closed folder to be expanded, while activating a collapse
control 144 causes data corresponding to an opened folder to
be collapsed (i.e., removed from view).

As shown in FIG. 12, a “Subscribe for Alert” checkbox
145 is displayed below each opened screen, view, applet,
and column/field/control object. Accordingly, in a block
312, the administrator selects appropriate checkboxes to
identify which views, applets, and columns/fields/controls
the administrator would like to provide data-change alert
support for. Subscription data 146 pertaining to the selected
UT objects and checked options are then submitted back to
metadata builder engine 120 in a block 314 along with a
request to provide data-change alert support for the selected
UT objects. An exemplary set of subscription data is shown
in the right-hand portion of FIG. 11.

In cases in which a customized third-party GUI is used,
data pertaining to XML tree 134 will be extracted to build
the GUI. Preferably, the third-party GUI will present the user
with selectable indicia corresponding to respective Ul
objects in a manner similar to that described above for the
reference GUI. Furthermore, the third-party GUI also needs
to generate subscription data compatible with subscription
data 146.

In addition to the Web-based reference or third party GUIL,
a GUI with similar features and operations may be presented
to users that are connected to the data system via a dedicated
or thin-client connection. For example, such a GUI may be
generated using common development languages, such as
C++ or Java. This optional GUI is depicted in FIG. 1 as
reference or third party GUI 36A.

In a block 316, the metadata builder engine invokes alert
builder 128 to create alert business processes 42 based on
application representation 132 and subscription data 146.
The alert business processes are used at run-time to invoke
alert business service 44 to generate appropriate data-change
alerts 38 in response to data-change trigger events defined
by the alert business processes. In one embodiment, the alert
business processes operate in a manner similar to a database
trigger, wherein one or more predefined operations are
performed in response to a triggering event defined by one

10

15

20

25

30

35

40

45

50

55

60

65

10

of the alert business processes. However, in contrast to a
database trigger, the alert business processes operate in the
middleware layer, and therefore do not require changes to
the database schema (In most RDBMS databases, triggers
are considered part of the schema rather than add-on com-
ponents.) Furthermore, the architecture disclosed herein
performs its operations in a manner that is transparent to the
normal operations of the data system.

The process is completed in a block 318, wherein selected
alert business processes are imported (i.e., loaded) into the
object manager. In one embodiment, three separate alert
business processes (and corresponding files), respectively
corresponding to insert, update, and delete event triggers, are
created for each alert-enabled view in the application. In one
embodiment, the alert business processes are written in a
matter corresponding to a Siebel®) enterprise data system
software component, and may be selectably loaded using
Siebel® tools. By selecting which alert business process
files to import, the administrator can choose what type of
data-change alert support is provided. For instance, the
administrator may not want to provide data-change alerts
corresponding to the insertion of new data (i.e., insert
events). Accordingly, the administrator will not load the alert
business process files corresponding to insert events.

With reference to FIG. 13, the following operations are
performed in response to data system data changes corre-
sponding to Ul objects that are alert-enabled. First a user of
either Web client 28, thin client 75, or third-party application
30 (via a third-party application client 230) submits a data
change to enterprise data system 18. In the case of the Web
client, the change is submitted to Web engine 58 via Web
server 26, as illustrated by respective paths 1 and 2. In the
case of third-party application client 230, the change is
submitted via mobile connector 46 (see FIG. 1). For thin
clients 75, the change is made through use of a client-side
thin client interface 232 and a corresponding server-side thin
client interface 234.

In general, the data change will correspond to either an
insert, update, or a delete event. As shown by paths 3, the
change is submitted to object manager 76. Upon receiving
the change, the object manager submits the change to
database 22 via an appropriate business component. At
substantially the same time, an applicable trigger event will
be generated if the change corresponds to an alert-enabled
UT object, as defined by that UI object’s corresponding alert
business process. In one embodiment, alert business pro-
cesses 42 monitor business components 102-z to determine
whether the data change results in any changes to any
alert-enabled fields, whereby such conditions may be
detected by monitoring changes to the business components’
fields.

In response to a triggering event, an appropriate alert
business process calls alert business service 44 and sends
data values corresponding to the change to the business
service. As discussed above, the data change may corre-
spond to an insert, update, or delete event. In the case of an
insert event, new data corresponding to multiple fields are
entered into database 22. Accordingly, the data values sent
to alert business service 44 comprise the various new values
for these fields. In the case of a delete event, the values
pertaining to various fields for a given object (e.g., row in a
list form) are deleted. Accordingly, the data values sent to
the alert business service comprise the various deleted
values. In the case of an update event, data pertaining to one
or more fields may be changed. In this instance, in one
embodiment, only those values pertaining to the fields that
have changed (both the old and new values) are sent to alert

US 9,448,860 B2

11

business service 44. In another embodiment, all of the values
pertaining to the fields’ parent object (e.g., values pertaining
to all of the fields of an applet that includes the changed
fields) are sent to the alert business service.

Upon being called and receiving the changed data values,
the alert business service calls XML converter 46 to convert
the values into an XML document 236. If applicable, mul-
tiple XML documents are then merged into a single XML
document. The XML document is then submitted to HT'TP
outbound business service 48 or outbound messaging ser-
vice 50. In general, outbound messaging service 50 com-
prises a standard messaging service, such as the messaging
services provided by Microsoft (MSMQ), IBM, and various
other platform OS vendors. The outbound business service
then “pushes” the alert in the form of the XML document to
third-party application 30. The third-party application may
then parse the XML document to extract the data-change
values.

Another aspect of the architecture concerns a configura-
tion mechanism that enables administrators and the like to
define configuration parameters for a particular implemen-
tation. For example, such configuration parameters may
pertain to data-change alert destinations, worktflow defini-
tions, and other implementation parameters. In one embodi-
ment, the configuration mechanism is based on a configu-
ration file containing a plurality of sections and key-value
pairs. Each section pertains to a particular object, which is
followed by one or more key-value pairs that correspond to
the parameters defined for that object.

In connection with the configuration file is a user-inter-
face by which an administrator may define configurable
objects and their respective parameters. For instance, an
exemplary configuration file user interface 250 is shown in
FIG. 14. Configuration file UI 250 includes is divided into
sections that map to corresponding sections in the configu-
ration file. Each section includes a section header corre-
sponding to a respective object for which configuration
parameters are defined. A section header edit box 252 is
provided for entry of data identifying the object being
configured. Following the section header edit box is a set of
key value parameters that are respectively entered via key
edit boxes 254n and value edit boxes 256n.

An exemplary set of configuration information used for
defining a queue (i.e., destination) to which data-change
alerts are pushed is shown at the top of configuration file Ul
250. The configuration object, “EAI MSMQ Transport,” is
entered in edit box 252a. The first key-value pair shown in
edit boxes 254a and 256a, “MsmqPhysicalQueueNAME”
and “private$\jayates1,” is used to specify the name of the
destination queue. The second key-value pair shown in edit
boxes 2546 and 2565, “MsmqQueueMachineName” and
“jsriniva04,” is used to specity the machine (e.g., server)
that hosts the queue.

The next section of configuration file UI 250 pertains to
data-change alert workflow parameters, as defined by the
“SMC Alert” value entered in edit box 2525. In this section,
each key-value pair corresponds to a workflow identifier
(e.g., name) and a corresponding XML document containing
instructions for performing that workflow. For example, edit
boxes 254d and 2564 respectively contain a workflow name
of “WorkflowDelete” and a value of “SMCAlert-Dele-
texml,” which defines configuration parameters that indi-
cate that the SMCAlert-Delete.xml document is used for the
workflow for data-change alerts relating to deleted data.
Exemplary Computer Server for Use with Embodiments of
the Invention

20

25

30

40

45

50

12

With reference to FIG. 15, a generally conventional
computer server 400 is illustrated, which is suitable for use
in connection with practicing the present invention. For
example, computer server 400 may be used for running the
application server software modules and components dis-
cussed above, such as metadata builder 40, alert business
processes 42, object manager 76, Web engine 58, and alert
business service 44, etc. The same or preferably a separate
computer server of similar architecture may be used to host
database 22. Similarly, the same or a separate computer
server of similar architecture may be used for Web server 26.
Examples of computer systems that may be suitable for
these purposes include stand-alone and enterprise-class
servers operating UNIX-based and LINUX-based operating
systems, as well as servers running the Windows NT or
Windows 2000 Server operating systems.

Computer server 400 includes a chassis 402 in which is
mounted a motherboard 404 populated with appropriate
integrated circuits, including one or more processors 406
and memory (e.g., DIMMs or SIMMs) 408, as is generally
well known to those of ordinary skill in the art. A monitor
410 is included for displaying graphics and text generated by
software programs and program modules that are run by the
computer server. A mouse 412 (or other pointing device)
may be connected to a serial port (or to a bus port or USB
port) on the rear of chassis 402, and signals from mouse 412
are conveyed to the motherboard to control a cursor on the
display and to select text, menu options, and graphic com-
ponents displayed on monitor 410 by software programs and
modules executing on the computer. In addition, a keyboard
414 is coupled to the motherboard for user entry of text and
commands that affect the running of software programs
executing on the computer. Computer server 400 also
includes a network interface card (NIC) 416, or equivalent
circuitry built into the motherboard to enable the server to
send and receive data via a network 418.

File system storage corresponding to the invention may be
implemented via a plurality of hard disks 420 that are stored
internally within chassis 402, and/or via a plurality of hard
disks that are stored in an external disk array 422 that may
be accessed via a SCSI card 424 or equivalent SCSI circuitry
built into the motherboard. Optionally, disk array 422 may
be accessed using a Fibre Channel link using an appropriate
Fibre Channel interface card (not shown) or built-in cir-
cuitry.

Computer server 400 generally may include a compact
disk-read only memory (CD-ROM) drive 426 into which a
CD-ROM disk may be inserted so that executable files and
data on the disk can be read for transfer into memory 408
and/or into storage on hard disk 420. Similarly, a floppy
drive 428 may be provided for such purposes. Other mass
memory storage devices such as an optical recorded medium
or DVD drive may also be included. The machine instruc-
tions comprising the software components that cause pro-
cessor(s) 406 to implement the operations of the present
invention that have been discussed above will typically be
distributed on floppy disks 430 or CD-ROMs 432 (or other
memory media) and stored in one or more hard disks 420
until loaded into memory 408 for execution by processor(s)
406. Optionally, the machine instructions may be loaded via
network 418 as a carrier wave file.

Thus, embodiments of this invention may be used as or to
support a software program executed upon some form of
processing core (such as the CPU of a computer) or other-
wise implemented or realized upon or within a machine-
readable medium. A machine-readable medium includes any
mechanism for storing or transmitting information in a form

US 9,448,860 B2

13

readable by a machine (e.g., a computer). For example, a
machine-readable medium can include such as a read only
memory (ROM); a random access memory (RAM); a mag-
netic disk storage media; an optical storage media; and a
flash memory device, etc. In addition, a machine-readable
medium can include propagated signals such as electrical,
optical, acoustical or other form of propagated signals (e.g.,
carrier waves, infrared signals, digital signals, etc.).

The above description of illustrated embodiments of the
invention, including what is described in the Abstract, is not
intended to be exhaustive or to limit the invention to the
precise forms disclosed. While specific embodiments of, and
examples for, the invention are described herein for illus-
trative purposes, various equivalent modifications are pos-
sible within the scope of the invention, as those skilled in the
relevant art will recognize.

These modifications can be made to the invention in light
of the above detailed description. The terms used in the
following claims should not be construed to limit the inven-
tion to the specific embodiments disclosed in the specifica-
tion and the claims. Rather, the scope of the invention is to
be determined entirely by the following claims, which are to
be construed in accordance with established doctrines of
claim interpretation.

What is claimed is:
1. A method comprising:
receiving, at an enterprise data system comprising a data
storage system, a selection of one or more user inter-
face (UI) objects, wherein
data identifying the one or more selected Ul objects is
received from a data system application of a first
type,
the one or more Ul objects correspond to elements of
an application user interface that a data system
application of a second type is configured to display
during operation,
data system applications of the second type are
designed with a capability to be updated in response
to data change events in the data storage system via
database triggers or existing middleware logic,
data system applications of the first type require updat-
ing in response to data change events in the data
storage system, but are not designed with a capabil-
ity to be updated in response to data change events
via the database triggers or the existing middleware
logic,
each of the application of the first type and the appli-
cation of the second type is configured to access and
use data stored in the data storage system,
the application of the first type and application of the
second type are configured to share the data stored in
the data storage system, and
the one or more Ul objects are selected from an alert
subscription Ul presented by the application of the
first type;
storing metadata corresponding to the application of the
second type, wherein
the metadata comprises object definitions for the plu-
rality of UI objects including a hierarchical position
of each of the plurality of UI objects;
processing the metadata to build an application represen-
tation comprising an internal representation of the
application of the second type, including data identi-
fying the hierarchical position of the each of the
plurality of UI objects;
alert-enabling the one or more Ul objects;

10

15

20

25

30

35

40

45

50

55

60

65

14

receiving, from the application of the first type, a selection
of the application of the second type, wherein
the selection of the application of the second type is
made from among multiple applications of the sec-
ond type, and
the selection of the application of the second type is
made through the alert subscription UI;

extracting, from a repository file, the metadata corre-

sponding to the application of the second type;

in response to receiving the selection of the one or more

UT objects, creating subscription data identifying the
one or more Ul objects;

creating one or more alert business processes correspond-

ing to the application representation and the subscrip-

tion data identifying the one or more Ul objects;
creating one or more alert business processes correspond-

ing to the application representation and the subscrip-

tion data, wherein the alert business processes are

configured to

define data-change trigger events, and

generate data-change alerts in response to the data-

change trigger events;
receiving a data change submission from a user of the
enterprise data system, at the enterprise data system;
implementing, in the data storage system, a data change
corresponding to the data change submission;
determining whether the data change corresponding to the
data change submission affects at least one of the one
or more Ul objects; and

if the data change affects at least one of the one or more

UT objects, alerting the application of the first type of

the data change, wherein

the alerting comprises pushing a data-change alert
comprising one or more data-change values to the
application of the first type, and

the data-change alert is configured to allow extraction
of the one or more data-change values by the appli-
cation of the first type.

2. The method of claim 1, wherein the determining
comprises:

in response to receiving the data change submission,

automatically monitoring for changes to alert-enabled
fields corresponding to the one or more Ul objects.

3. The method of claim 2, wherein the alert-enabled fields
are associated with business components that are executed in
an application server tier of an n-tier distributed software
architecture.

4. The method of claim 1, wherein the data-change alert
comprises an eXtended Markup Language (XML) docu-
ment.

5. The method of claim 1, wherein the application of the
first type is alerted in response to the data being changed by
a user of the application of the first type.

6. The method of claim 1, wherein the one or more Ul
objects include objects pertaining to screens, views, applets,
columns, and fields in the user interface that the application
of'the second type is configured to display during operation.

7. The method of claim 1, wherein

the data-change alert is sent in response to a data update

event, and

the data-change alert comprises before update data and

after update data corresponding to applicable one or
more Ul objects.

8. The method of claim 1, wherein

the data-change alert is sent in response to a data deletion

event, and

US 9,448,860 B2

15

the data-change alert comprises data that existed prior to
being deleted by the data deletion event corresponding
to applicable one or more Ul objects.

9. The method of claim 1, wherein

the data-change alert is sent in response to a data insert

event, and

the data-change alert comprises data inserted in connec-

tion with entry of new data corresponding to applicable
one or more Ul objects.

10. The method of claim 1, wherein the receiving, the
alert-enabling, and the alerting are performed in a manner
that is transparent to normal data processing system opera-
tions.

11. The method of claim 1, further comprising:

enabling a user of the application of the first type to

specify a destination to which data-change alerts are
sent.

12. The method of claim 1, wherein the application of the
first type is external to the enterprise data system.

13. The method of claim 1, wherein the application of the
first type comprises an application developed by an entity
other than the vendor of the enterprise data system.

14. The method of claim 1, further comprising:

translating metadata corresponding to the application user

interface into data corresponding to the alert subscrip-

tion user interface, wherein the alert subscription user

interface comprises

icons corresponding to Ul objects associated with spe-
cific features of the application user interface, and

a user entry area associated with each icon, wherein the
user entry area is configured to accept a selection of
the corresponding Ul object.

15. The method of claim 1, wherein a plurality of appli-
cations of the second type are configured to share the data
stored in the data storage system.

16. A method comprising:

providing to an alert subscription user interface (UI)

indicia pertaining to a plurality of user interface (UI)

objects, wherein

the plurality of UI objects correspond to elements of an
application user interface that a data system appli-
cation of a second type is configured to display
during operation,

an enterprise data system comprises a data storage
system, the application of the second type and a data
system application of a first type are configured to
access and use data stored in the data storage system

the application of the second type and the application of
the first type are configured to share the data stored
in the data storage system,

the indicia are adapted to be presented by the alert
subscription Ul as a hierarchical tree corresponding
to a hierarchical relationship of the plurality of Ul
objects corresponding to elements of the application
user interface displayed by the application of the
second type during operation,

the alert subscription Ul is further configured to be
presented by the application of the first type,

data system applications of the second type are
designed with a capability to be updated in response
to data change events in the data storage system via
database triggers or existing middleware logic, and

data system applications of the first type require updat-
ing in response to data change events but are not
designed with a capability to be alerted to data
change events via the database triggers or the exist-
ing middleware logic;

20

35

40

45

50

55

60

65

16

storing metadata corresponding to the application of the
second type, wherein
the metadata comprises object definitions for the plu-
rality of UI objects including a hierarchical position
of each of the plurality of UI objects;

processing the metadata to build an application represen-

tation comprising an internal representation of the
application of the second type, including data identi-
fying the hierarchical position of the each of the
plurality of UI objects;

rendering the hierarchical tree to provide a visual repre-

sentation of the application representation;

receiving a selection of the one or more Ul objects from

the application of the first type;

alert-enabling the one or more Ul objects;

receiving, from the application of the first type, a selection

of the application of the second type, wherein

the selection of the application of the second type is
made from among multiple applications of the sec-
ond type, and

the selection of the application of the second type is
made through the alert subscription UI;

extracting, from a repository file, the metadata corre-

sponding to the application of the second type;

in response to receiving the selection of the one or more

UT objects, creating subscription data identifying the
one or more Ul objects;

creating one or more alert business processes correspond-

ing to the application representation and the subscrip-

tion data, wherein the alert business processes are

configured to

define data-change trigger events, and

generate data-change alerts in response to the data-
change trigger events;

receiving a data change submission from a user of the

enterprise data system, at the enterprise data system;
implementing, in the data storage system, a data change
corresponding to the data change submission;
determining whether the data change corresponding to the
data change submission affects at least one of the one
or more Ul objects; and

if the data change affects at least one of the one or more

UT objects, alerting the application of the first type of

the data change, wherein

the alerting comprises pushing a data-change alert
comprising one or more data-change values to the
application of the first type, and

the data-change alert is configured to allow extraction
of the one or more data-change values by the appli-
cation of the first type.

17. The method of claim 16, wherein selected levels in the
hierarchical tree may be expanded or collapsed in response
to a user input.

18. The method of claim 16, wherein the application
representation comprises an XML tree, further comprising:

sending the XML tree to a browser operating on a client

machine that is linked in communication with the
enterprise data system; and

rendering the hierarchical tree via the browser.

19. The method of claim 16, wherein the alert subscription
Ul is generated by:

building an application representation comprising an

internal representation of the application of the second
type, including data identifying a hierarchical position
of each of the plurality of UI objects; and

rendering the alert subscription Ul based on data extracted

from the application representation.

US 9,448,860 B2

17

20. The method of claim 19, wherein

the alert subscription UI that is rendered is included as
part of the application of the first type, and

the alert subscription Ul is generated based on the appli-
cation representation passed from the data processing
system to the application of the first type.

21. The method of claim 16, wherein:

the data system applications of the first type are third-

party applications;

the application of the second type and the application of

18

to be updated in response to data change events via
the database triggers or the existing middleware
logic;
storing metadata corresponding to the application of the
second type, wherein
the metadata comprises object definitions for the plurality
of UI objects including a hierarchical position of each
of the plurality of Ul objects;
processing the metadata to build an application represen-

the alert subscription Ul is configured to allow the one or 10 tation comprising an internal representation of the
more Ul objects to be selected; application of the second type, including data identi-
the alert-enabling facilitates monitoring the enterprise fying the hierarchical position of the each of the
data system for data change events; plurality of UI objects;
the pushing of the data change alert comprises using a |, rendering the hierarchical tree to provide a visual repre-
message queuing service or a Hypertext Transport sentation of the application representation;
Protocol (HTTP) service; receiving a selection of the one or more Ul objects from
the one or more alert business processes operate in a the application of the first type;
middleware layer of the enterprise data system; alert-enabling the one or more Ul objects;
the one or more alert business processes do not require 70 receiving, from the application of the first type, a selection
changes to a database scheme of the data storage of the application of the second type, wherein
system; and the selection of the application of the second type is
the data-change alert comprises an XML, document. made from among multiple applications of the sec-
22. A non-transitory machine readable medium having ond type, and
instructions stored thereon, which when executed by a 25 the selection of the application of the second type is
processor perform the method comprising: made through the alert subscription UI;
generating data by which an alert subscription user inter- extracting, from a repository file, the metadata corre-
face (UI) may be rendered to enable a selection of one sponding to the application of the second type;
or more Ul objects by a data system application of a in response to receiving the selection of the one or more
first type, wherein 30 UT objects, creating subscription data identifying the
the alert subscription Ul comprises a plurality of indicia one or more Ul objects;
pertaining to a plurality of Ul objects, creating one or more alert business processes correspond-
the plurality of UI objects correspond to elements of an ing to the application representation and the subscrip-
application user interface that a data system appli- tion data, wherein the alert business processes are
cation of a second type is configured to display 35 configured to
during operation, define data-change trigger events, and
the indicia pertaining to the plurality of Ul objects are generate data-change alerts in response to the data-
adapted to be presented as a hierarchical tree corre- change trigger events;
sponding to a hierarchical relationship of the plural- receiving a data change submission from a user of the
ity of Ul objects corresponding to elements of the 40 enterprise data system, at the enterprise data system;
application user interface displayed by the data sys- implementing, in the data storage system, a data change
tem application for the second type during operation; corresponding to the data change submission;
the alert subscription Ul is configured to enable the determining whether the data change corresponding to the
selection of the one or more Ul objects by marking data change submission affects at least one of the one
the indicia corresponding to the one or more Ul 45 or more Ul objects; and
objects, if the data change affects at least one of the one or more
the one or more Ul objects are selected from the UT objects, generating a data-change alert and submit-
plurality of UI objects, ting the data-change alert to be sent to the application
an enterprise data system includes a plurality of data of the first type, wherein
system applications of the second type, 50 the data-change alert comprises one or more data-
the enterprise data system comprises a data storage change values corresponding to at least one of the
system, one or more Ul objects, and
the application of the second type and the application of the data-change alert is configured to allow extraction
the first type are configured to access and use data of the one or more data-change values by the appli-
stored in the data storage system, 55 cation of the first type.

23. The non-transitory machine-readable medium of

claim 22, wherein selected levels in the hierarchical tree may
be expanded or collapsed in response to a user input.

24. The non-transitory machine-readable medium of
claim 22, wherein the application representation comprises
an XML tree, and execution of the instructions further
performs the method comprising:

generating Web-content based on the XML, tree; and

sending the Web-content to a browser operating on a

client machine that is linked in communication with the
data processing system to enable the hierarchical tree to
be rendered by the browser.

the first type are configured to share the data stored
in the data storage system,
the alert subscription Ul is configured to be presented
by the application of the first type, 60
data system applications of the second type are
designed with a capability to be updated in response
to data change events in the data storage system via
database triggers or existing middleware logic, and
data system applications of the first type are third-party 65
applications that require updating in response to data
change events but are not designed with a capability

US 9,448,860 B2
19

25. The non-transitory machine-readable medium of
claim 22, wherein the application representation comprises
an XML tree, and execution of the instructions further
performs the method comprising:

sending the XML tree to the application of the first type 5

to be rendered by that application to generate the alert
subscription Ul.

#* #* #* #* #*

20

